Highest vectors of representations (total 19) ; the vectors are over the primal subalgebra. | \(g_{5}+g_{-1}\) | \(-h_{5}+2h_{1}\) | \(h_{3}\) | \(g_{1}+g_{-5}\) | \(g_{9}+2g_{2}\) | \(g_{12}+2g_{7}\) | \(-g_{6}+1/2g_{4}\) | \(-g_{10}+1/2g_{8}\) | \(g_{13}\) | \(g_{17}+g_{11}\) | \(g_{16}\) | \(g_{19}\) | \(g_{18}\) | \(g_{21}\) | \(g_{20}\) | \(g_{22}\) | \(g_{23}\) | \(g_{24}\) | \(g_{25}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi_{2}\) | \(0\) | \(0\) | \(4\psi_{2}\) | \(\omega_{1}-\psi_{1}-2\psi_{2}\) | \(\omega_{1}+\psi_{1}-2\psi_{2}\) | \(\omega_{1}-\psi_{1}+2\psi_{2}\) | \(\omega_{1}+\psi_{1}+2\psi_{2}\) | \(2\omega_{1}-2\psi_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+2\psi_{1}\) | \(3\omega_{1}-\psi_{1}-2\psi_{2}\) | \(3\omega_{1}+\psi_{1}-2\psi_{2}\) | \(3\omega_{1}-\psi_{1}+2\psi_{2}\) | \(3\omega_{1}+\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-4\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}+4\psi_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi_{2}} \) → (0, 0, -4) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{4\psi_{2}} \) → (0, 0, 4) | \(\displaystyle V_{\omega_{1}-\psi_{1}-2\psi_{2}} \) → (1, -1, -2) | \(\displaystyle V_{\omega_{1}+\psi_{1}-2\psi_{2}} \) → (1, 1, -2) | \(\displaystyle V_{\omega_{1}-\psi_{1}+2\psi_{2}} \) → (1, -1, 2) | \(\displaystyle V_{\omega_{1}+\psi_{1}+2\psi_{2}} \) → (1, 1, 2) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}} \) → (2, -2, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}} \) → (2, 2, 0) | \(\displaystyle V_{3\omega_{1}-\psi_{1}-2\psi_{2}} \) → (3, -1, -2) | \(\displaystyle V_{3\omega_{1}+\psi_{1}-2\psi_{2}} \) → (3, 1, -2) | \(\displaystyle V_{3\omega_{1}-\psi_{1}+2\psi_{2}} \) → (3, -1, 2) | \(\displaystyle V_{3\omega_{1}+\psi_{1}+2\psi_{2}} \) → (3, 1, 2) | \(\displaystyle V_{4\omega_{1}-4\psi_{2}} \) → (4, 0, -4) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+4\psi_{2}} \) → (4, 0, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi_{2}\) | \(0\) | \(4\psi_{2}\) | \(\omega_{1}-\psi_{1}-2\psi_{2}\) \(-\omega_{1}-\psi_{1}-2\psi_{2}\) | \(\omega_{1}+\psi_{1}-2\psi_{2}\) \(-\omega_{1}+\psi_{1}-2\psi_{2}\) | \(\omega_{1}-\psi_{1}+2\psi_{2}\) \(-\omega_{1}-\psi_{1}+2\psi_{2}\) | \(\omega_{1}+\psi_{1}+2\psi_{2}\) \(-\omega_{1}+\psi_{1}+2\psi_{2}\) | \(2\omega_{1}-2\psi_{1}\) \(-2\psi_{1}\) \(-2\omega_{1}-2\psi_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+2\psi_{1}\) \(2\psi_{1}\) \(-2\omega_{1}+2\psi_{1}\) | \(3\omega_{1}-\psi_{1}-2\psi_{2}\) \(\omega_{1}-\psi_{1}-2\psi_{2}\) \(-\omega_{1}-\psi_{1}-2\psi_{2}\) \(-3\omega_{1}-\psi_{1}-2\psi_{2}\) | \(3\omega_{1}+\psi_{1}-2\psi_{2}\) \(\omega_{1}+\psi_{1}-2\psi_{2}\) \(-\omega_{1}+\psi_{1}-2\psi_{2}\) \(-3\omega_{1}+\psi_{1}-2\psi_{2}\) | \(3\omega_{1}-\psi_{1}+2\psi_{2}\) \(\omega_{1}-\psi_{1}+2\psi_{2}\) \(-\omega_{1}-\psi_{1}+2\psi_{2}\) \(-3\omega_{1}-\psi_{1}+2\psi_{2}\) | \(3\omega_{1}+\psi_{1}+2\psi_{2}\) \(\omega_{1}+\psi_{1}+2\psi_{2}\) \(-\omega_{1}+\psi_{1}+2\psi_{2}\) \(-3\omega_{1}+\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-4\psi_{2}\) \(2\omega_{1}-4\psi_{2}\) \(-4\psi_{2}\) \(-2\omega_{1}-4\psi_{2}\) \(-4\omega_{1}-4\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+4\psi_{2}\) \(2\omega_{1}+4\psi_{2}\) \(4\psi_{2}\) \(-2\omega_{1}+4\psi_{2}\) \(-4\omega_{1}+4\psi_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{3\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}+\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}-\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-4\psi_{2}}\oplus M_{-4\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{2}}\oplus M_{-4\omega_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+4\psi_{2}}\oplus M_{4\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{2}}\oplus M_{-4\omega_{1}+4\psi_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{3\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}+\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}-\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-4\psi_{2}}\oplus M_{-4\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{2}}\oplus M_{-4\omega_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+4\psi_{2}}\oplus M_{4\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{2}}\oplus M_{-4\omega_{1}+4\psi_{2}}\) |
2\\ |